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Abstract-Many important results concerning effective transport properties in a disperse system, including 
those secured under rather uncommon conditions, can be obtained with the help of the method of ensemble 
averaging combined with ideas of the self-consistent field theory. This justifies the undertaken careful 
consideration and partial revision of the basic ideas underlying both the method and the corresponding 
mathematical technique. An unequivocal set of conservation equations governing the transport of a scalar 
quantity in phases of the system on the average is also derived and formal representations for both the 
interphase exchange and the mean flux of the quantity in terms of integrals over the volume of some test 

particle are presented in the first part of the paper. 

1. INTRODUCTION 

AN EXHAUSTIVE description of all kinds of transport 
processes taking place in composite materials or in a 
dispersed heterogeneous media consisting of discrete 
inclusions (or particles) and an embedding continuous 
matrix is an old and important problem the complete 
solution of which is still far from being found. To a 
great extent, this is accounted for by the fact that the 
problem requires many complex, essentially different 
questions to be answered simultaneously. Among 
these, mention should be made of the questions per- 
taining to ‘microscopic’ features of the transport pro- 
cesses on the level of an individual inclusion and to 
collective interaction of many inclusions resulting in 
their joint influence on the observed ‘macroscopic’ 
transport properties. Proper statements of corres- 
ponding physical and mathematical problems, typical 
difficulties arising in attempts at their solution as well 
as the present state of the art on the whole and certain 
important advances are to be found in the review 
paper by Batchelor [I]. 

The global problem simplifies considerably when 
the macroscopic linear scale characte~zing the mean 
parameters of a medium and the averaged field related 
to a physical quantity being transferred, substantially 
exceeds the microscopic scale associated with the 
internal structure of the medium and bearing upon 
the size and relative positions of inclusions. In such a 
case the macroscopic transport properties coincide 
with the bulk properties giving account of the general 
ability of the medium to transfer some conservable 
scalar or vector quantity, such as heat, mass, electric 
charge, momentum, and so forth. Then it seems quite 
natural to use continual methods for the overall 
description of transport processes regarding them as 
occurring in certain fictitious homogeneous continua 
which represent phases or components of the original 
medium. Within the scope of the theory of such co- 

existing continua two separate objectives of fun- 
damental nature arise. The first consists in rigorous 
derivation of universal conservation equations that 
govern the transfer of heat, mass or another con- 
servable quantity in each continuum, with the exch- 
ange of this quantity between the continua being 
allowed for. The second objective concerns the closure 
of the equations and amounts to the derivation of 
constitutive relations for all the unknown terms 
appearing in the conservation equations. Calculation 
of the bulk transport properties as functions of the 
physical and structural parameters of the medium is 
part of the latter problem. 

The conservation equations are usually formulated 
by either using a postulative approach on the basis of 
purely phenomenological and semi-empirical reason- 
ing or averaging local transport equations, valid inside 
homogeneous materials of both the matrix and the 
inclusions, over a representative time interval or a 
physically small volume of the mixture containing 
many inclusions. Refined versions of such a treatment 
are exemplified by refs. 12-71. On the contrary, 
methods of quite different origin are usually employed 
for solving the closure problem. They have practically 
nothing in common with the methods of time or space 
averaging, utilized to obtain the conservation equa- 
tions. It has become clear in recent years, that the 
effective solution of both problems is possible within 
the framework of a unified general approach based 
on the best use of the ensemble averaging technique 
together with some method specific for the self-con- 
sistent field theory. 

The idea of averaging over a configurational en- 
semble of particles immersed into a continuous 
matrix seems to be first used in this context by 
Batchelor [8] in connection with the analysis of the 
rheological problem for dilute suspensions of rigid 
particles. Since then this idea has been extensively 
developed and applied to the description of other 
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NOMENCLATURE 

N radius of spheres \ velocity. 
C heat capacity per unit volume 
D diffusivity Greek symbols 

.i density of inner heat sources i: porosity 
G, g arbitrary fine-grained function and its I! characteristic generalized function 

average value /? heat conductivity 
G’, G* fluctuations of G P concentration of particles by volume 
L, I macro- and microscopic linear scales 7 temperature 
N total number of particles 4 probability distribution function. 
n number concentration of particles 
r(i) position vector of the jth sphere Subscripts 

centre 0 ambient matrix 

9 heat flux 1 dispersed phase. 

transport processes in mixtures of different con- 

centrations. A review of the ensemble averaging tech- 
nique and some aspects of the self-consistent field 
approximation, when applied to suspension flows is 

now available [9, IO]. 
The use of ensemble averaging has significant 

advantages over the time and space averaging. The 
derivation of the conservation equations and their 

closure, that is, the formulation of the constitutive 
relations, may be carried out by the same methods, so 
that there is no need to resort to supplementary 

models in order to obtain bulk transport properties. 
There is also no need for additional hypotheses about 
the possible connections between volume averages 

and corresponding quantities obtained by averaging 
over the other space objects (e.g. over planes differ- 
ently oriented in space). By using the ensemble averag- 
ing one succeeds in formulating the bulk conserva- 

tion equations in an entirely unambiguous form and, 
thus, in avoiding the latter problem the signifi- 

cance of which has been fairly pointed out in ref. [I I]. 
It should also be mentioned that ensemble averaging 
leads to results which have an evident meaning in 
terms of the probability theory, and there is no 

necessity to require the presence of a great number of 
particles in physically small volumes of a disperse 
mixture as is the case for volume averaging. At last, 
a feasible way of generalization of all results and con- 
clusions, obtained in comparatively simple situations 

peculiar to stationary transport in inactive media, to 
more complex situations is quite straightforward, so 
that there is no need to devise new special means 
in order to treat transport processes under unsteady 
conditions or in active media containing distributed 
sources or sinks of quantities partaking in these 

processes. 
The general method under discussion has been 

virtually worked out in the last two decades and has 
been applied recently to a number of problems unap- 
proachable by other means. Among these problems 
are the determination of the effective diffusivity of an 

admixture and of the effective thermal conductivity in 

a disperse medium characterized by internal heat and 
mass release [12], by appreciable contacts between 
neighbouring particles [ 131 and by chemical reactions 

and phase transitions at the particle surfaces [I41 as 
well as to the investigation of dispersion effects 
accompanying unsteady transport processes [15]. 
Despite the adequacy of the method for solving non- 
standard problems, it has never been set forth in a 
reasonably concise form. The intended purpose of this 

paper is, accordingly, to fill the gap as regards the 
formulation of both conservation and constitutive 

equations for heat or mass transfer. 
The layout of the article is as follows. After giving 

an account of the mathematical formalism for dealing 
with the ensemble averaging procedure, which is the 
basis of the whole subsequent reasoning, the averaged 
field equations governing heat and mass transfer in 
the phases of a disperse mixture are derived in this 

first part of the article. Modifications of these equa- 
tions valid in the vicinity of a chosen test particle of 
the mixture as well as the solution of the closure 
problem are studied in the second part of the paper. 

2. ENSEMBLE AVERAGING 

The development of an adequate mathematical for- 
malism ensures a necessary foundation for averaging 
local transfer equations valid in the phases of a 

mixture. It provides a proper statistical smoothing 
and eliminates excessive details related to exact posi- 
tions and orientations of all the particles as well as 
to local patterns of temperature and concentration 
fields in their vicinity. Then one is free to confine 
oneself to treating only a few observable quantities 
relevalent to the averaged picture of transport pro- 
cesses. Such a procedure of smoothing is not only 
convenient on the pragmatic ground but also appears 
to be perfectly natural. Really, mixtures differing 
in the types of particles and their packing can, never- 
theless, correspond to the same macroscopic picture 
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and exhibit the same effective transfer properties. 
Besides, random parameters characterizing the 
mixture structure at the particle level are actually 
unknown. It seems obvious that the most general and 
consistent way of averaging has to include the concept 
of possible states of the system of particles. 

To simplify the matter and to leave main ideas 
unencumbered by insignificant particulars, attention 
is given in what follows to a mixture consisting of N 
identical spherical particles immersed into a con- 
tinuous matrix, both the particles and the matrix being 
separately homogeneous. It is assumed further that 
the motion of the particles relative to the matrix is 
either absent or sufficiently slow to prevent a notable 
influence of various convective effects on heat and 
mass transfer. That such an influence can be of 
importance is demonstrated in ref. [ 161. This amounts 
to an assumption that the effective thermal and diffus- 
ive Peclet numbers for a single sphere are small as 
compared with unity. The sphere radius, a, and the 
structural microscopic length, 1, characteristic of the 
particle arrangement are taken large compared with 
the molecular dimension so that the particles and the 
matrix can be viewed upon as continua. At the same 
time, these microscales are usually small as compared 
with the scale length, L, of essential changes in macro- 
scopic properties of the mixture and in the fields of 
the mean temperature or admixture concentration. 

2.1. Ensemble distribution functions 
Any state of the dispersed phase of mixtures with 

identical spherical particles is completely charac- 
terized by a set of instantaneous position vectors, r(j), 
j = 1. . , N, of the centres of all the spheres and by 
sets of their time derivatives of different order. In as 
much as the relative motion of the mixture phases is 
taken to be negligible, it becomes possible to exclude 
the time derivatives and to make allowance only for 
the position vectors. Then, the states which cor- 
respond to the same collection of position vectors but 
to different sets of particle velocities, accelerations, 
etc. have to be regarded as indistinguishable. A rig- 
orous substantiation of such an idea for disperse sys- 
tems with moving phases is presented in ref. [ 171 where 
the conservation equations have been proved (with 
the help of Feynman’s technique of integrals over 
random trajectories), to preserve their form when each 
position vector is thought of as a function of time with 
possible discontinuities modelling collisions between 
the particles. Thus, one arrives at a concept of the 
configurational ensemble of the assemblage of 
particles. Members of the ensemble are symbolized by 
discernable sets of the vectors r(j) acceptable from a 
physical point of view. 

In a more general case, when the particles are of the 
same but arbitrary form and of different size, it is 
necessary to incorporate into the analysis two comp- 
lementary sets of unit orientation vectors locked inside 
each particle and to introduce likewise a linear scale of 
the particles as a new independent ensemble variable. 

The properties of the configurational ensemble of 
equal spheres can be determined to the full if a dis- 
tribution function, 4(C,), is given. Here CN is the 
configurational phase space for the whole of the 
assemblage generated by N vectors r(j) with due regard 
for the inequalities ]r(‘) -r(j)] > 2a, i # j, which result 
from the condition of non-overlapping of the hard 
spheres. Exclusive cases of strictly ordered systems, 
the particles of which are positioned in a prescribed 
manner so that their centres occupy the points of some 
regular lattice, can be included into the analysis by 
allowing for the ensemble distribution function to be 
expressed in terms of proper delta-functions. 

Along with +(C,), one is able to introduce con- 
ditional distribution functions &C,~. , ]r), $(C,_ 2]r, 
r’), pertaining to the configurational ensembles of 
N- 1, N-2, spheres, the positions of one, two 
or more spheres being fixed. Presuming that all the 
distribution functions are normalized to unity one can 
come, by integrating over the position vectors of a 
number of particles, to unconditional or conditional 
distribution functions for the remaining particles. 
Especially important are the distribution functions 
4(r) and &r, r’) for one and two spheres derived after 
integrating 4(C,) over the position vectors of the 
other spheres, 

$(r, r’) = {b(C,,,) fi dr(‘)I;~~=,~,~x)=, 
I= I jfi.k 

4(r) = 
s 

$(r,r’)dr’. (1) 

The latter function can be regarded as the uncon- 
ditional probability density of a single particle centre 
being located at the point r, the former one defines 
the probability density of this event conditioned by 
the presence of another sphere centre at the point r’. 
Obviously, 

44CN) = 4(rM(CN- 1 Irh 

4(CN- I Id = $(r, r’MC,+ *lr, 0,. . . . (2) 

Note that for the sake of simplicity the time, t, is 
omitted from the arguments of the distribution func- 
tions. This fits mixtures with permanent relative pos- 
itioning of particles, such as granular composite 
materials and fixed particulate beds. 

2.2. Ensemble averages 
Let G(t, r]CN) be a ‘fine-grained’ function of time 

and coordinates characterizing some physical quan- 
tity and depending in addition on the arrangement of 
particles. This function must be a generalized one, 
that is, it is well defined inside both the matrix and 
the particles where it is continuous but may have 
discontinuities at interfaces. The ensemble uncondi- 
tioned average of G(t, r]C,) is to be defined as 
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df, r) = (G) = J G(t, rlCNM(cN) dCN. (3) 

Conditional averages have to be defined in a similar 
way. For example, 

gft, WI = (.G),, = J G(t, rlCvt~(CN-I Jr’) dG. I 

(4) 

is calculated by integrating over all physically per- 
missible values of di), j = 1,. . , , N- 1, compatible 
with the condition that the centre of one of the spheres 
lies at the point r’. It follows from equations (I) to (4) 
that 

g(t, r) = J s(r, rlr’)qW) dr’, 

g(t, rlr’) = 
s 

g(t,rlr’, r”) &r’,r”) dr”, . . (5) 

Apart from equations (3) and (4), which define the 
averages attributed to the mixture as a whole, it is also 
possible to determine averages associated with the 
mixture phases. For this purpose it is convenient to 
put forward the detailed density of centres of the 
spheres, that is, 

N(rlC,) = g 6(r-r(“) 
i-l 

and the characteristic function 

(6) 

B(rlC,) = 1 - C H(a-Ir-r”)l) 
,= I 

(7) 

which assumes zero value at points within the particles 
and equals unity in the interstices, 6(.x) and H(x) 
being the Dirac delta-function and the Heaviside step 
function, respectively. 

Equations (6) and (7) enables one to dete~ine the 
mean number concentration of particles and their 
mean concentration by volume, that is, 

n(i) = (N(rlC,)) = N(G(r-d”)) = N$(r), 

p(r) = 1 -(O) = N(H(a-Ir-r”‘l)) 

zz 
J 

n(r’) dr’. (8) 
Jr--r’/ <‘, 

In particular, neglecting the terms of the order u/L, 
if such an action is permissible. one obtains from 
equation (8) a familiar relation 

p(r) = ~7uz3n(r). (9) 

Similarly, conditional averages corresponding to 
equation (8) are to be written as 

n(rlr‘) = N(6(r -r(‘f))r. = N#(r, r’),* 

p(rlr’) = N(H(a-/r-r”‘/)),, 

= J n(r”lr’) dr”. (IO) = n(r) 
J 

g,(t,r+xlr)dx+O 
,,--l’,<o. ,r m-r”,> 20 r<o 

Here the inequality N >> 1 is taken into account. 
Both unconditional and conditional matrix concen- 
trations by volume are to be brought into action along 
with those for the particles 

c(r) = 1 -p(r), &jr’) = I -&Jr’). (11) 

It is worthwhile noting that while the linear scale of 
p(r) and c(r) equals L by definition the scale of the 
corresponding conditional quantities in equation (I I) 
is of the order of a. 

Now the unconditional phase averages bearing sep- 
arately upon the matrix and the particles arc to be 
defined as 

e(r)gO(t, r) = (OG) = 
s 

BG(t, rIC,,,)4(CN) dCN. 

ArkI = ((1-W) 

where the subscripts 0 and 1 refer henceforth to the 
matrix and the particles, respectively. Similar exprcs- 
sions can be written for averages conditioned by the 
presence of the sphere centre at the point r’. Namely, 

~(rlr’)~~(~,r~r’) = (BG),. 

= 
J 

UGff, rlCN)4(CN- , lr’> dC- , , 

p(rlr’)g, (t rlr’) = ((1--4Gh 

= (I -UtG(t.r/CN)~(C,y~flr’)dCN j. 
J 

(13) 

Relations similar to those in equation (5) follow 
from equations (2), (12) and (13). The definition of 
the averages in equations (3), (4) and (I 2) leads to the 
equations 

9(t,r) = s(r)90(L r)+P(r)9r (6. rf, 

g(f,rlr’) = e(rlr’)gO(f, rjr’)+p(rlr’)g, (6 rlr’). 
(14) 

The expressions for the averages over the dispersed 
phase can be reduced to a form analogous to that of 
the last formulae in equations (8) and (IO). By using 
the definition of B in equation (7) one gets 

f(rk7 1 (6 4 = s Wfg , (t, rlr’) dr’ 
,r--r’l<ri 
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= s n(r”/r’)g, (t, rlr’, 4) dr”. (15) 
,r--i,<u,,i-r”,,z& 

As before, one here takes advantage of the fact that 
the spheres are statistically undistinguishable. In the 
former relation the integration is carried out over 
those values of r’ that the sphere of radius a, the centre 
of which lies at the point r’, contains a given point 
r. In the latter relation the role of the variable of 
integration is played by r” and the non-overlapping 
condition for the spheres of the same radius with the 
centres at r‘ and r” is imposed in addition. As far as 
the present author is aware, integrals of such a type 
were brought into practice for the first time in ref. 

11% 
Relations of the type of those numbered (15) can 

be written also for averages over the dispersed phase 
conditioned by prescribing positions of more than one 
particle. Then a conditional average, conforming to 
the requirement that the location of the centres of M 
spheres is given, has to be expressed as an integral of 
the corresponding average with M+ 1 sphere centres 
being fixed, multiplied by a suitable conditional num- 
ber concentration of the particles. Thus, there is a 
practically infinite (N >> 1) train of integral relations 
resembling those numbered (15) and connoting con- 
ditional averages over the dispersed phase. In this 
context a problem of closure or truncation of this 
train arises which will be explicitly considered later. 
Note that equations (15) play a fundamental role in 
what follows. 

Owing to the independence of the distribution func- 
tions of the time and space variables, the operators of 
ensemble avera~ng commute with the differentiation 
with respect to both t and r. For the unconditional 
averages one has 

(dG/at> = aq(t, r)/& (dG/dr> = aq(t, r)/dr. (16) 

Similar equalities are valid for all the conditional 
averages in disperse systems with both motionless and 
moving particles. 

2.3. Fl~c~u~tiu~s 

There are two alternative 
fluctuatioils of an arbitrary 
G(t, rlCN) about its averaged 

ways of introducing 
fine-grained function 
value. ‘Physical’ flue- 

tuattons relative to the phase averages are to be deter- 
mined by means of obvious relations 

BG = @go f BG', 

(l-@)G= (1-~)q~+(l-~)G’. (17) 

It is clear that G’(t, r/C,) represents a generalized 
function the exact definition of which is dictated by 
the physical meaning of G(t, rlCN), and its values 
inside the particles may be essentially different from 
those within the interstices. It is quite evident that 
(8G’) = {(l-6)G’) = (G’) = 0. 

Besides, it is possible to introduce a fluctuating 

function G*(t, r\C,) with reference to deviations of 
G(t, rlCN) from its mean value q(t, r) associated with 
the disperse mixture as a whole when one does not 
know exactly whether the point r belongs to the par- 
ticles or to the matrix. Thus, one assumes 

GO,rlCiv) =s(r,r)+G*(t,rlCiv). 

It is quite simple to show that 

(18) 

<G >,, = s(t, r) +g*(t, rlr’), 

(BG),. = ~(t, r)q&, r) +&(l, rlr’)qo*(t, rlr’) 

((1 -@G>,, = p(&r)g,(t, r)i-p(t,rlr’)gt(t,rlr’) 

(19) 

where the notations 

g*(f, rlr’) = <G >f, 

~(t, rir’)q;C(t, rir’) = (BG*),., 

A~,rlWXt,W) = ((1 -@)G*), (20) 

are used. When Ir-r’l + co all the averages marked 
with an asterisk go to zero. 

In contrast to fluctuations of the type of G’(t, r( C,), 
fluctuations of the type of G*(t,rlC,) have no 
immediate physical meaning or interpretation. This 
reflects, to a degree, an inherent lack of our knowledge 
of whether the variable vector r lies in the particles 
or in the interstices. However, the latter fluctuations 
happen to be very useful while attempting to describe 
in an explicit form perturbations induced to the fields 
q(t, r), qo(t, r) and q, (t, r) by either a fixed sphere or 
a solid impenetrable wall bounding the mixture under 
study. They prove to be rather helpful in both solution 
of the closure problem and analysis of boundary 
effects. 

3. AVERAGED TRANSPORT EQUATIONS 

The main aim of the following analysis consists in 
rigorous derivation of conservation equations, which 
govern heat or mass transfer processes in a hetero- 
geneous mixture on the ma~o~opic scale, by means 
of the ensemble averaging of local heat conduc- 
tion or diffusion equations valid in the materials of 
the mixture phases. Below, for the sake of defi- 
niteness, the heat conduction is considered keeping in 
mind that all the results may be well applied without 
substantial changes to diffusion and some other pro- 
asses. 

Since the relative motion of the phases is assumed 
to be unimportant, it is reasonable to use a reference 
frame in which the mixture is motionless as a whole. 
Then the heat conduction,equation in the materials of 
both phases can be presented as a single generalized 
equation 

carat = -VQ+J, Q = -A(iJT/&), (21) 

where T and Q are understood as generalized scalar 



and vector functions describing in detail the tem- one needs to express the mentioned terms in an explicit 
perature and heat flux in the mixture, respectively. form as functions of these variables and their dcriva- 
Generahzed functions C and A, representing the heat tives. It is this procedure which constitutes the cssencc 
capacity per unit volume and the heat conductivity, of the closure problem for the averaged heat transfer 
as well as the function 1, characterizing the intensity equations and the resulting expressions arc to bu 
of possible inner heat sources, are to be expressed in looked upon as constitutive relations for the mixture 
the form under study. 

C = &*,,+(I -otc,, A = @&+(I -6)/l], 

J= &t-(1 -O)j,, (22) 

where c,, & and j, are the specific heat capacities 
related to unit volume, the heat conductivities and the 
densities of heat sources in the materials of the matrix 
and of the particles. 

The key idea underlying the closure problem 
involves expressing these unknown quantities through 
the use of relations (I 5) in the following manner : 

((1 -@VQ> = n(r’)V,q(t, r/r’) dr’. 

By averaging over the ensemble distribution func- 
tion #(C,) of relations resulting from the first equa- 
tion in set (21) after multiplication by I- 0 and 0, one 
obtains the following equations for the mean tem- 
peratures zO and r , of the mixture phases : 

I. 

((I --@VT) = ! n(r’)V,z(t,r/r’) dr’. (26) 
jr-- r’, <a 

sc,~(&,/dt) = -aql~r+((l-O)(aQ/ar))+&jo, 

So far, use has been made of the reference frame 
connected with the mean motion of the mixture on the 
whole. Generalization to more complicated situations 
when both phases are moving is straightforward and 
leads to equations 

r,(t,r) = (W), z,(t,r) = ((1 -O)T), 

q(& r) = (Q>, _i,(t,r) = (00, 

j,(t,r) = ((1 -@).O. (23) 

The commutability equations (16) the identi- 
fication of C and J in equations (22) and the obvious 
relation (~~Q~~r) = V(Q) - (( I- ~~)(~Q/~r)) are 
used when deriving equations (23). 

By summing up the equations in set (23) one gets 

(24) 

pc,(&‘&+v,V)~~ = -((l -O)(i?Q,‘&))+pj, (27) 

written in the laboratory coordinate system. They 
have to be substituted for those in set (23). Here v,) 
and v, are the mean velocities of the ambient matrix 
within the interstices and of the particles, respectively. 
Formulae (26) remain true under the imposed 
assumption that the Peclet number for a single particle 
is much smaller than unity to assure negligibility of 
the influence of a relative flow on the heat transfer 
either to or from the particle surface. This means, in 
particular, that the relative velocity vO-v, must be 
sufficiently small as well [ 161. 

where r is the mean mixture temperature expressed in 
terms of r,, and z, in accordance with equation (14) 
and c, j are associated with the mixture as a whole. 
Thus, the averaged heat transfer equations are defined 
completely, if a link between the mean heat flux q and 
the mean phase temperatures zO and Z, is established. 

The averaging of the second equation in set (21) 
with the help of equations (16) and (22) leads to 

All the results are valid for the processes of diffusion 
of an admixture in a disperse medium if C is sub- 
stituted by unity and the thermal conductivities A, and 
i, are replaced by the diffusivities I), and D,. Then 
zO and rr play roles of the mean concentrations of the 
admixture in the matrix and in the particles, respec- 
tively. 

q = -(AFT) = -fi,<evr>-A,((1 --@VT) 

= --/%-(I, --&)({I -@V7-). (25) 

Regarding jO and j, as known quantities, it is seen 
that equations (23) and (24) contain only two 
unknown terms, (( 1 - 0)VQ) and (( 1 - B)V7’), which 
both represent certain averages over the dispersed 
phase. The first term characterizes the heat exchange 
between the phases per unit volume of the mixture 
whereas the second one bears on a deviation of the 
mean heat tlux in an actual disperse medium from 
that in a one-phase homogeneous continuum the heat 
conductivity of which happens to coincide with that 
of the matrix material. To make the unknown vari- 
ables zO and 7 t determinable by solving equations (23). 

Note that the discrete nature of the dispersed phase 
is evidently taken into account while formulating all 
the equations presented above. This means the effect 
of possible direct contacts between particles to be set 
aside and, therefore, a component of the total heat flux 
due to transport through permanent or instantaneous 
contact areas of touching or colliding particles to be 
overlooked. 

4. CONCLUDING REMARKS 

The averaged field equations derived above for heat 
and mass transfer in disperse media are principally of 
the same form as those obtained with the help of other 
approaches (see, for example, refs. 12-71). However, 
the very procedure of their derivation is not only of 
some methodological interest but also throws light 
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on the possible methods for managing the closure 
problem. It follows from equations (26) that the 
unknown variable terms involved in equations (23) 
and (27) could be found by means of simple 
integration, if one would be successful in determining 
explicit representations for the quantities g(t, rlr’) and 
z(t, r(r’) conditioned by the presence of a test sphere 
centre at the point r’. When Ir-r’l < a, these quan- 
tities represent the mean heat flux and the temperature 
inside the test sphere obtained by averaging over the 
ensembte of allowable con~gurations of all the other 
spheres, that is, over the conditional ensemble dis- 
tribution function. Equations governing heat transfer 
around the test sphere on the average can be derived 
by employing methods quite similar to those used 
above. In such a way, the necessary link between the 
macroscopic continual description of heat conduction 
and the study of heat transfer processes on the micro- 
scopic level of individual particles is ensured. 

Various ways of calculating equations (26) and, 
thereby, of solving the closure problem will be con- 
sidered in detail in the second part of this paper. 
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TRANSFER? DE CHALEUR ET DE MASSE DANS LES MILIEUX DISPERSES-I. 
EQUATIONS DE CHAMP MOYENNEES 

R&m&-Des resultats importants concernant les propritt& effectives de transport dans un systtme 
dispersk, incluant ceux relatifs g des conditions plutBt rares, peuvent &tre obtenus par une methodc de 
moycnne d’ensemble combink aux id&es de la thiorie de champ auto-cohkrent. Cela justifie l’examen 
soigneux et la r&vision partielle des idbes de base concernant a la fois la mkthode et la technique math& 
matique correspondante. Un systZme d’tquations de conservation gouvernant le transport d’une grandeur 
scalaire dans une phase du systitme est obtenu et des representations formelles pour r&change interphase 
et le flux moyen de la grandeur en fonction des intCgrales sur le volume est p&sent& dans la premiere partie 

de cette ktude. 

WARME- UND STOFFTRANSPORT IN DISPERSEN MEDIEN-I 
GEMITTELTE FELDGLEICHUNGEN 

Z~me~~ng-Viele wichtige Ergebnisse im Hinblick auf die effektiven Transportvorg~nge in einem 
dispersen System, such solche die unter ziemlich ungew~hnlichen Bedin~n~en auftreten, kiinnen mit Hilfe 
des Verfahrens der Ensemble-Mittelung in Kombination mit den Vorstellungen der selbstkonsistenten 
Feldtheorie ermittelt werden. Dies rechtfertigt die untemommene sorgf%tige Betrachtung und teilweise 
Revision der Vorstellung, die dem Verfahren und der entsprechenden mathematischen Behandlung zu- 
grunde liegt. Es wird ein eindeutiger Satz von Erhaltungsgleichungen Wr den Transport einer SkalargriiBe 
in einer Phase des gemittelten Systems abgeleitet. AuBerdem wird im ersten Teil der Arbeit eine formale 
Beschreibung fiir den Austausch zwischen den Phasen und die mittlere Stromdichte der Griil3e als Inte- 

gralterm iiber das Volumen einiger Tesrpartikel vorgestellt. 
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TEl-UIO- U MACCOIIEPEHOC B AMCnEPCHbIX CPEAAX.--I. YCPEAHEHHblE 
YPABHEHUIT IIOJIFI 

honmwn-Mnoreesaxcsble pe3ynbTaTblnO 3@eKTHBHbIMXapaKTep~CTHKaMIIe~HOCa BLUICIIepCHOfi 

CHcTeMe, B TOM 9ACne B B HeCKOJIbKO HeO6bISHbIX yCnOBH9X, MO,KHO nOnyYUTb IIpH IIOMOIW MeTOlla 

aHCaM6neBOrO ycpentleaaa B coYeTaHm c memo Teopea caMocornacoBamor0 nom. 3~0 onpaenbr- 

BaeT npeAIIpHHflTbIe HHWCe noJ(pO6HbIii aHarH3 Ii ~aCTWIHbIir IIepeCMOTp OCHOBHbIX IIOnOlKeHHk KBK 

CaMOI-0 MeTOAa,TaK RCOOTBeTCTByKNl(er0 MaTeMaTPtWCKOrO UIIIapE4Ta.B IIepBOti~aCTlc pa6oTbIC@Op- 

MynepoBaHa BnonHe 0npeneneHHan csicTebfa ypameHkik coxpaaeam, onpenenmourarr B cpenHeM 

nepeHOC CKaJUIpHOii BenBYUHbI B $a3aX L,HCIIepCHOii CpeL,bI,H IlpenCTaBneHbI @OpManbHbIe BbIpawteHIiR 

n~1a~e*+a3oBoro o6MeHaHcpe~HeronoToKa3~0iiBena~eHbI~epe3riHTerpanbInoo6aeMyHeKoTopoii 


